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In this manuscript, we explore the intersection of Quantum Machine Learning (QML) and Tensor
Networks (TNs) in the context of the one-dimensional Axial Next-Nearest-Neighbour Ising (ANNNI)
model with a transverse field. The study aims to concretely connect QML and TN by combining
them in various stages of algorithm construction, focusing on phase diagram reconstruction for the
ANNNI model, with supervised and unsupervised techniques. The model’s significance lies in its
representation of quantum fluctuations and frustrated exchange interactions, making it a paradigm
for studying magnetic ordering, frustration, and the presence of a floating phase. It concludes
with discussions of the results, including insights from increased system sizes and considerations for
future work, such as addressing limitations in Quantum Convolutional Neural Networks (QCNNs)
and exploring more realistic implementations of Quantum Circuits (QCs).

I. INTRODUCTION

QML and TNs are both advanced topics at the in-
tersection of quantum computing and Machine Learning
(ML), but they have different focuses and applications.
Both QML and TNs involve concepts from quantum me-
chanics. QML has the potential to provide exponential
speedup for certain ML tasks, where quantum states can
represent data and quantum gates can manipulate these
states. However, it faces the challenge of the current non-
fault tolerant era where, in practice, dealing with noise
and the limited capacity of quantum chips is an active
area of research. On the other hand, TNs are versatile
mathematical tools for handling high-dimensional data in
quantum physics and ML. They efficiently break down
complex systems into manageable components, finding
applications in quantum information theory, condensed
matter physics, and deep learning, providing researchers
with enhanced computational efficiency.

In this paper we want to concretely connect these two
sides of quantum computing, exploiting one or the other
in the various stages of construction of the overall algo-
rithm. While some literature explored the comparison of
these two approaches, only a few examples focus on the
proposed idea of combining these two techniques. Indeed,
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in the context of variational quantum algorithms, in [1, 2]
the authors explored the use of Parametrized Quantum
Circuits (PQCs) for calculating diverse properties of com-
plex many-body systems, describing the benefits of this
method relative to the use of TNs. While in [3], the paper
describes a joint optimization framework utilizing both
TNs and PQCs, the benefits of this style of joint train-
ing are predicted to give improved performance in QML,
eventually numerically verified in [4].
Finally, [5] proposed a synergistic pretraining of quan-

tum circuits via TNs applicable to a diverse range of
circuit architectures and learning tasks, which was pre-
dicted to yield benefits in performance and trainability
within general ML tasks.
In our work, we use TNs to prepare the initial state

to be classified by a PQC. Specifically, we focus on the
phase diagram reconstruction for the ANNNI model.
The ANNNI model [6–9] with transverse field consists

of ferromagnetic interactions, J1 > 0, between nearest
neighbors and antiferromagnetic interactions, J2 < 0,
between next-nearest neighbors, competing with each
other. The Hamiltonian is written as

HANNNI =− J1
N−1∑
i=1

σx
i σ

x
i+1 − J2

N−2∑
i=1

σx
i σ

x
i+2

−B
N∑
i=1

σz
i , (1)

which we can rewrite in terms of the adimensional ratios
κ = −J2/J1 and h = B/J1. The former is called the
frustration parameter.
This is the simplest model combining the effect of

quantum fluctuations (owing to the presence of a trans-
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FIG. 1: Summary of the workflow: the left panel illustrates the graphical representation of the one-dimensional
ANNNI model (Eq. 1) and its phase diagram. For the middle panel, we stress the use of TN as a tool to get the
phase diagram of the model applying finite-size scaling analysis and as a source of the quantum state for the next
level. The right panel showcases the QML analysis, with input data sourced from the DMRG, to classify different
phases of the model.

verse magnetic field), and frustrated exchange interac-
tions. As a consequence, it is a paradigm for the study of
competition between magnetic ordering, frustration, and
disordering effects. Competition can introduce dramatic
effects in spin systems [10], leading to the appearance of
a rich phase diagram.

Despite seeming too simple to describe realistic mate-
rials, this model may reproduce important features ob-
served experimentally in systems that can be described
by discrete models with effectively short-range competing
interactions [8]. Some of these experimental findings in-
clude Lifshitz points, adsorbates, ferroelectrics, magnetic
systems, alloys or polytypes. On the other side, the so-
called floating phase emerging in the model is appealing
to experimental researchers to explore it. This critical
incommensurate phase has been observed very recently
by using Rydberg-atom ladder arrays [11].

Several works have already studied the structure of the
phase diagram of this model. Some of them treat the 2D
classical model [7, 12–20] and others tackle the 1D quan-
tum model [16, 19, 21–29]. Of the latter, some deal with
finite systems and other with infinite systems [30]. How-
ever, in intermediate frustration and finite-transverse
field regimes, the statements about phases and phase
transitions are quite different. Two phases, paramagnetic
and floating phase, have been addressed [19, 23, 30] and
the former has been further divided into unmodulated
and modulated one in some works [21, 22, 26, 28, 31].
However, the floating phase generates controversy in the
literature since it was even not found in some of the pre-
vious studies [18, 24, 32, 33].

Building upon recent literature [34], we extend the
analysis of the ANNNI model through QML techniques
to larger spin models than previously studied, moving
from a maximum of 12 spins to 20. The primary objec-

tives involve investigating how an increase in the num-
ber of qubits brings enhancements in overall accuracy
and in the claimed generalization capabilities [35]. Addi-
tionally, our exploration of the generalization properties
aims to comprehend how these models might extend to
phase states not represented in the dataset, akin to the
approach in [29].
Furthermore, we subject the ANNNI model to an in-

depth TN analysis, bringing the finite-size analysis to
models far larger than any currently reachable through
fully quantum means, reaching up to 480 sites.
The paper is structured as follows: Section II delin-

eates the applied methodologies derived from both TNs
and QML. Section III showcases the numerical results ob-
tained through the TN analysis providing some insights
about the different phases emerging in the model and
the phase transitions delimiting them. Section IV delves
into the examination of the phase diagram, employing
both supervised and unsupervised approaches by simu-
lating Quantum Circuits. The structure of both analyses
is highlighted in Figure 1. The paper concludes with
a discussion of the results and potential future work in
Section V.

II. METHODS

A. Tensor Networks

TNs [36–47] serve as versatile mathematical constructs
designed for the representation and manipulation of high-
dimensional data, particularly in the realms of quan-
tum physics and ML [48–50]. TNs provide a general-
ization of the original ideas beyond the density matrix
renormalization group (DMRG) [51–57] which as today
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stands as the best algorithm to simulate one-dimensional
quantum-many body systems. A generic TNs is built to
provide an efficient encoding and manipulation of large
data structures, by appropriately compressing them into
small chunks according to specific patterns of correla-
tions. Such small chunks become the individual tensors
in the network. TNs have witnessed widespread applica-
tions across diverse fields, including quantum information
theory, condensed matter physics at and out of equilib-
rium, and deep learning [58–60].

Matrix Product States (MPSs) [61–63] are the rele-
vant TNs for DMRG and represent a particular class of
TNs predominantly used for depicting quantum states in
one-dimensional systems. Within the MPS framework,
a quantum state is built as a product of matrices, each
corresponding to a specific site within the system. The
entanglement structure of the state is succinctly encapsu-
lated through these matrices, providing a concise repre-
sentation of many-body quantum states. Proving itself as
a potent tool, MPSs have been instrumental in monitor-
ing the properties of one-dimensional quantum systems
[64, 65], involving aspects like ground state properties
and dynamic behaviors.

In the context of MPSs, DMRG [51–57] becomes an
iterative numerical algorithm that allows obtaining the
best MPS for encoding the ground state of quantum sys-
tems in one and two dimensions [66–71].

Originally formulated for gapped Hamiltonians,
DMRG can also be used to describe critical systems by
leveraging on an appropriate finite-size scaling procedure
[72–76] or by directly working in the thermodynamic
limit [77–79]. Beyond its origins in condensed matter
physics, it has evolved into a standard tool, finding appli-
cations in diverse domains, including quantum chemistry,
high-energy physics, and ML.

As a result, DMRG has emerged as the de facto stan-
dard for analyzing phase diagrams of one-dimensional
systems. Here, to make contact with QML results we
characterize the phase diagram on a finite chain, and
thus make use of finite-size scaling (FSS) techniques [80–
82] which allows us to make predictions about the ther-
modynamic limit by studying local order parameters of
finite systems. In addition to this, some insights on one-
dimensional quantum field theory [83] are necessary to
understand some of the phases and their limits. Numeri-
cal simulations have been carried out with TeNPy’s two-
site DMRG [84].

B. Quantum Machine Learning

QML is an interdisciplinary field that merges the prin-
ciples of quantum mechanics with the computational
paradigms of ML. The intersection of quantum physics
and ML has led to the development of algorithms and
models designed to harness the unique properties of
quantum systems to solve complex computational prob-
lems more efficiently than classical counterparts [85].
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FIG. 2: Architecture of the QCNN: Input state prepara-
tion (blue), then alternating Convolution layers (green)
and Pooling layers (red) and a Fully Connected layer
(dark green) at the end [34]

QML algorithms often aim to outperform classical al-
gorithms on specific tasks, capitalizing on the inherent
advantages provided by quantum mechanics. Examples
include quantum support vector machines, quantum clus-
tering algorithms, and quantum neural networks. Re-
searchers in this field are actively exploring the capa-
bilities and limitations of quantum computers for ML
applications. As quantum computing hardware contin-
ues to advance, and as more quantum devices become
accessible, the field of quantum ML holds promise for
revolutionizing the way we approach complex computa-
tional challenges. However, it also presents unique chal-
lenges, including issues related to qubit coherence, er-
ror correction, and the development of scalable quantum
processors. In this work we focus mainly on algorithms
that can, to some extent, be executed on current noisy
quantum processors, leaving the discussion of quantum
linear-algebra based methods to speed up an otherwise
computationally costly training method in the context of
large-scale fault-tolerant quantum computers.
Indeed, the design of genuinely quantum methods may

yet offer advantages based on the idea of PQC (PQC-
based methods) as the key building block of the model
more generally, so-called quantum neural network mod-
els. It is important to note that learning separations
(so, provable exponential advantages) for learning us-
ing quantum models have already been proven in most
learning settings [86], subject to standard assumptions in
complexity theory, and it can be shown [87] that these
separations may be much more common when data is
generated by a quantum process (under slightly stronger
computational assumptions).
A fundamental limitation to the scaling up of most

PQC-based ML methods is the so-called barren plateau
phenomenon, where the gradients [88] of the cost func-
tion vanishes exponentially with the number of qubits
employed. On such barren plateau landscapes, the cost
function sharply concentrates on its mean, leading to an
exponentially narrow minimum and typically requiring
an exponential number of shots. While this phenomenon
was originally identified in the context of variational
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quantum algorithms and quantum neural networks, it
has recently been shown that exponential concentration
is also a barrier to the scalability of quantum generative
modeling [89].

Quantum cost landscapes for a large class of problems
can exhibit highly complex and non-convex landscapes
that are resource intensive to optimize [90]. Recently, in
[91] the authors provide a perspective article about the
capabilities of PQC for barren plateau-free landscapes
and connect them also to is classically simulable. This
represents an important bridge between the connection
we are making in this work, assigning different tasks to
a quantum algorithm and a classical quantum-inspired
one.

In the context of QML models for detecting phases
in spin systems, two models stand out. The first, the
QCNN, is a supervised learning model where the labels
represent the different phases. The second, known as
Quantum Anomaly Detection (AD), follows an unsuper-
vised approach.

1. Quantum Convolutional Neural Network

QCNNs are a category of quantum circuits inspired by
the widely popular classical counterpart, Convolutional
Neural Networks (CNNs). These quantum architectures,
much like CNNs, aim to learn representations from input
data by exploiting their inherent local properties. Indeed,
the model was originally proposed in [92] for the task of
detecting phase transitions, where these local properties
equate to the interactions between the neighboring spins

Figure 2 provides a visualization of the employed
QCNN, composed of three primary components:

• Convolution layers: these involve the application of
alternating unitaries to pairs of neighboring spins.

• Pooling layers: half of the qubits are measured, and
depending on the result of the measurement, a dif-
ferent rotation is applied to the remaining qubits.

• Fully connected layer: following alternating convo-
lution and pooling layers, a final unitary is applied
to the remaining qubits.

This architecture is an excellent choice for a super-
vised approach to learning the phase of spin models. Its
strength lies not only in its ability to utilize local prop-
erties of the input data but also in its proven remarkable
training capabilities compared to other PQCs. This ad-
vantage stems from its unique structure, which includes
a local final measurement [93] and a total number of
parametrized gates that scale logarithmically with the
number of qubits. These two properties contribute to a
resulting suppression of Barren Plateaus [94].

Furthermore, recent advancements have significantly
optimized the effective implementation of such architec-
ture on real hardware [95, 96].

MPS Autoencoder

⟨Z⟩

⟨Z⟩

⟨Z⟩

|ψ(κ, h)⟩

Ry(·) Rz(·) Rz(·) Rz(·)

Ry(·) Rz(·) Rz(·) Rz(·)

Ry(·) Rz(·) Rz(·) Rz(·)

CRy(·) Rz(·) Rz(·) Rz(·)

Ry(·) Rz(·) Rz(·) Rz(·)

Ry(·) Rz(·) Rz(·) Rz(·)

FIG. 3: Architecture of the Anomaly detection circuit
(yellow) and input state preparation (blue). An exam-
ple architecture for 6 qubits, with half designated trash
qubits positioned at the center. [34]

2. Quantum Anomaly Detection

Quantum AD is another architecture inspired by deep
learning models. This architecture functions as the quan-
tum equivalent of an Autoencoder. Due to the inversion
property of quantum circuits, only the forward encod-
ing part is considered and trained. The training process
involves minimizing the Pauli-Z expectation values of a
subset of the qubits, known as trash qubits. The objective
is for the model to learn an effective unitary operation ca-
pable of compressing all the information in the remaining
un-measured qubits:

U(θ⃗)|ψ⟩N = |0⟩⊗K ⊗ |ϕ⟩N−K (2)

where N is the total number of qubits, and K is the
number of trash qubits.
Figure 3 shows an example of a 6-qubit AD (N = 6)

with 3 trash qubits (K = 3).

III. TENSOR NETWORK ANALYSIS

Before moving on to the hybrid TN/QML approach we
first show that TNs fully captures interesting features in
the phase diagram of the ANNNI model, giving results in
good agreement with other state-of-the-art approaches.
From earlier studies including simulations of both fi-

nite [26] and infinite [30, 97] systems and the study of
a spin chain that can be mapped onto our model using
a non-local transformation [97, 98], we expect a phase
diagram like the one in Fig. 4, with four different phases
(the ferromagnetic phase, the paramagnetic phase, the
floating phase and the antiphase) and a disordered line
[13]. All phases are gapped except the gapless floating
phase. A system is known to be gapless if there are ex-
citations at arbitrarily low energies in the infinite lattice
limit (and gapped if not) [99]. In this work, as we simu-
late finite systems, there is necessarily a nonzero energy
separating the ground state and the first excited state.
However, this energy spacing can either remain finite or
approach zero in the thermodynamic limit.
To observe the transitions and the properties of the dif-

ferent phases, we fix the value of the transverse field, h,
and vary the frustration parameter, κ. When the system
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FIG. 4: Phase diagram of the quantum one-dimensional
ANNNI model of Eq. 1. The dotted line is the
exactly-solvable Peschel-Emery (PE) line h = 1/4κ − κ
[13]. Dashed lines represent Ising (I), Kosterlitz-Thouless
(KT), and Pokrovsky-Talapov (PT) phase transitions.
The spin chain can be seen as a ladder of two spin chains
as sketched in the cartoon spin configurations.

goes through a phase transition (i.e., at a critical point),
a qualitative change in correlations of the ground state
occurs. A measure of the range over which these correla-
tions approach zero is called the correlation length, ξ. In
gapped phases, ξ is finite and the correlation functions of
local operators typically exhibit exponential decay with
distance,

Czz
i,j = ⟨σz

i σ
z
j ⟩ − ⟨σz

i ⟩⟨σz
j ⟩ ∝ e−|i−j|/ξ. (3)

In gapless phases, this quantity can become infinite and
the correlation functions follow a power-law behavior
with distance.

Czz
i,j ∝

1

|i− j|η . (4)

When the system is approaching a critical point, the cor-
relation length diverges and how it does so allows us to
know the nature of the transition. Notice that correla-
tion length extracted from different operators could have
different values but they are all proportional and scale in
the same way with the system size.

In Fig. 5, the inverse of the correlation length along the
horizontal cut at h = 0.5 is shown, providing qualitative
insights into the nature of the phase transitions. At low
values of frustration, the inverse of the correlation length
vanishes linearly in agreement with the Ising (I) critical
exponent ν = 1. After this, it reaches its maximum at a
sharp kink that corresponds to the disorder point [13, 15].
Beyond this point, it decreases quickly, in agreement with
the exponential divergence of the correlation length typ-
ical for a Kosterlitz-Thouless (KT) transition [100]. Ap-
proaching the phase transition between the critical phase

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

1

I KT PTPE

FIG. 5: Inverse of the correlation length computed
from Czz

i,j as a function of κ along the horizontal cut at
h = 0.5 obtained on a finite-size system with N = 240
sites with open boundary conditions. Colors indicate
different phases: the ferromagnetic phase (light green),
the paramagnetic phase (dark green), the floating phase
(light blue), and the antiphase (dark blue) from left
to right. Phase transitions according to previous re-
sults [13, 26, 102] are also shown by dashed lines: Ising
(I) transition, Kosterlitz-Thouless (KT) transition, and
Pokrovsky-Talapov (PT) transition. The dotted line is
the exactly solvable Peschel-Emery (PE) line [13].

and the antiphase from the latter, the inverse of the cor-
relation length vanishes with a critical exponent smaller
than one, in agreement with the Pokrovsky-Talapov (PT)
critical exponent ν = 1/2 [101]. Details can be found in
Appendix A.

A. Ferromagnetic Phase and Paramagnetic Phase

We now examine more closely the phase transition be-
tween the ferromagnetic and paramagnetic phases.
In the ferromagnetic phase, the next neighbor in-

teractions dominate and all the spins are aligned in
the x direction, |→→ · · · →⟩ or |←← · · · ←⟩ (note that
σx
j |⇆⟩ = ± |⇆⟩), leading to a uniform magnetization.

In the paramagnetic phase, the transverse magnetic field
dominates and makes the spins be aligned in the z direc-
tion, |↑↑ · · · ↑⟩ (note that σz

j |↑⟩ = |↑⟩). As a result, the
magnetization along the x direction is a relevant order
parameter to characterize the quantum phase transition,

Mx =
1

N

N∑
j=1

σx
j . (5)

At low values of frustration, the magnetization is ex-
pected to be non-zero, indicating an ordered phase. As
the frustration increases, there is a critical value where
the magnetization undergoes a sudden change, signaling
a quantum phase transition to a disordered phase with
the magnetization approaching zero. Although the mag-
netization of an infinite system shows a discontinuity, this



6

FIG. 6: (Up) Magnetization along x (see Eq. 5) ob-
tained on four finite-size systems (N = 60, 120, 240, 480)
with open boundary conditions along the horizontal cut
at h = 0.5. As expected, magnetization in the ferromag-
netic phase is non-zero and in the paramagnetic phase is
zero. Note that the phase transition approaches the per-
turbative analysis prediction as the length of the chain
increases. (Down) Binder’s cumulant (see Eq. 6) for κ-
values in the surroundings of the critical point extracted
form Eq. 7.

abrupt step is rounded when the system size N is finite
[80]. Consequently, the critical frustration value at which
the phase transition occurs may shift slightly for finite
systems compared to the thermodynamic limit. To make
predictions of this limit by working with finite systems,
we make use of Finite-Size Scaling (FSS) [80, 81]. Within
this framework, Binder’s cumulant can be used to locate
the precise transition point [82]

U
N
= 1− ⟨(M

x

)
4⟩

N

3⟨(Mx)2⟩2
N

. (6)

Since this ratio is built to be size-independent at the
critical point, by plotting it as a function of the parameter
of the model for different system sizes, one can identify
the critical point as the crossing of the lines.

The phase boundary between the ferromagnetic and

the paramagnetic phases can be obtained by using per-
turbation theory for κ < 0.5, splitting the Hamiltonian in
a classical Ising part and a small transverse fluctuation,
an approximate expression for the critical line is obtained
in [9] and reads

h
I
≈ 1− κ

κ

(
1−

√
1− 3κ+ 4κ2

1− κ

)
, (7)

and corresponds to an Ising-like transition [102].
Fig. 6 (upper panel) shows the behavior of the local or-

der parameter ⟨Mx⟩, which allows us to differentiate both
the ferromagnetic and the paramagnetic phases. Finite-
size effects appear and it can be seen how the disconti-
nuity in magnetization approaches the critical point and
becomes steeper as the system size increases. By comput-
ing Binder’s cumulant through Eq. 6, we get κ

I
= 0.270,

see Fig. 6 (lower panel).

B. Floating Phase

1. Luttinger Liquid and Friedel Oscillations

In 1D quantum physics, the floating phase [101, 103,
104] is described by a Luttinger liquid with algebraic in-
commensurate correlations [83]. Its properties are de-
scribed by a bosonic conformal field theory and the de-
cay of all the correlation functions is controlled by the
parameter K, often referred to as the Luttinger liquid
parameter [83, 105]. This Luttinger liquid phase is sta-
ble against superconducting perturbations and sponta-
neous translation symmetry breaking due to an emer-
gent U(1) symmetry when the Luttinger exponent lies
within the interval 1/4 < K < 1/2 [97]. Furthermore,
open boundary conditions act as an impurity and lead to
Friedel oscillations in spin density. According to Bound-
ary Conformal Field Theory (BCFT), the profile takes
the following form [106–108]:

⟨σ̃z
j ⟩ ∝

cos(qj + α)

[(N/π) sin(πj/N)]
K
, (8)

where K is the Luttinger exponent, q is the incommensu-
rate wave-vector and α is a phase shift. By fitting Friedel
oscillations we can get an accurate estimate of both the
Luttinger parameter K and the incommensurate wave-
vector q [109]. One example of such fits is shown in Fig.

7, where the uniform part of the spin-density, ⟨σz
j ⟩, has

been subtracted. Details can be found in Appendix B.

2. Kosterlitz-Thouless transition

A Kosterlitz-Thouless (KT) transition appears be-
tween the paramagnetic phase and the floating phase.
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FIG. 7: Friedel oscillation pattern inside the floating
phase for h = 0.5 and κ = 0.900 obtained on a finite-size
system of N = 240 sites with open boundary conditions.
Green points are DMRG data and blue circles are the
result of the fit with Eq. 8 (note the very accurate agree-

ment). The uniform part of the spin-density ⟨σz
j ⟩ has

been subtracted (see Appendix B).

0.5 0.6 0.7 0.8 0.9 1.0
0.6

0.7

0.8

0.9

1.0
KT

FIG. 8: Incommensurate wave-vector q obtained on a
finite-size system with N = 240 sites with open bound-
ary conditions along the horizontal cut at h = 0.5. As it is
shown, incommensurability doesn’t vanish in the param-
agnetic phase. Therefore, the Kosterlitz-Thouless (KT)
transition is an incommensurate-incommensurate phase
transition.

In this model, it is an incommensurate-incommensurate
transition, as we see in Fig. 8. As mentioned in [97, 98],
the critical point is associated with the Luttinger liquid
exponent taking the value K = 1/2. Then, we can locate
the transition by extracting the Luttinger liquid expo-
nent and finding the value corresponding to K = 1/2.

Numerical simulations involving different techniques
suggest that the KT critical line is given by [26]

FIG. 9: (a) Luttinger liquid exponent K and (b) incom-
mensurate wave-vector q obtained on a finite-size sys-
tem with N = 240 sites with open boundary conditions
along the horizontal cut at h = 0.5. The Kosterlitz-
Thouless (KT) transition appears when K = 1/2 and
the Pokrovsky-Talapov (PT) transition arises when in-
commensurability vanishes. The solid line in (b) is a fit
assuming the Pokrovsky-Talapov (PT) critical exponent
ν = 1/2.

h
KT

(κ) ∼= 1.05

√(
κ− 1

2

)
(κ− 0.1). (9)

Fig. 9(a) shows theK exponent in terms of frustration.
The value we get for the critical point is κ

KT
= 0.814.

This means that our result presents a relative error of
0.36% concerning previous calculations.

3. Pokrovsky-Talapov transition

The transition between the floating phase and
the antiphase (discussed below) is a commensurate-
incommensurate transition expected to be in the
Pokrovsky-Talapov (PT) [101, 110] universality class.
Then, we can fit the incommensurate wave-vector q as
q/π ∝ (κ

PT
− κ)ν , where ν takes the value of ν = 1/2

at the PT transition. Close to the critical point a square
root-like behavior arises and we can extract a numerical
value for the critical point with high accuracy. We obtain
κ

PT
= 0.977 with a root mean squared error of ≈ 10−3.

Also from [26], we have an expression for this critical
line given by

h
PT

(κ) ∼= 1.05

(
κ− 1

2

)
, (10)

from which we estimate a relative error of 0.10%.
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FIG. 10: Entanglement entropy with conformal distance
dN (n) at h = 0.5 and κ = 0.814 for a finite-size system
with N = 240 sites for open boundary conditions. The
obtained value for the central charge in the critical point
agrees within 3.6% with the CFT prediction c = 1 for a
Luttinger liquid.

4. Entanglement entropy

According to Conformal Field Theory (CFT), the en-
tanglement entropy at critical points in a finite-size chain
with open boundary conditions scales with the block size
n as [73, 74, 76, 111, 112]

SN (n) =
c

6
ln dN (n) + s1 + ln g, (11)

where dN (n) = 2N
π sin

(
πn
N

)
is the conformal distance,

and s1 and ln g are non-universal constants.
We use Eq. 11 to extract the central charge numeri-

cally. Close to the KT critical line, the central charge can
be extracted with sufficient accuracy even from relatively
small chains, see Fig. 10 [113].

The obtained value for the central charge in the criti-
cal point agrees within 3.6% for N = 240 with the CFT
prediction c = 1 for a Luttinger liquid. This value of the
central charge could be understood if we see the model as
two quantum Ising chains coupled by a “zig-zag” interac-
tion with strength J1 [16]. Inside the floating phase and
in the large κ limit, the model is conformally invariant
with central charge c = 1/2 + 1/2 = 1, i.e. two critical
Ising models.

C. Antiphase

In the antiphase, the antiferromagnetic next-nearest
neighbor interactions dominate and the ground state is
|→→←← . . .⟩ or |←←→→ . . .⟩. From the relative po-
sition of spins, it is easy to see that a convenient local
order parameter to identify this phase is the so-called
“staggered magnetization”, defined as

Sx =
1

N
(σx

1 + σx
2 − σx

3 − σx
4 + . . .) . (12)

However, the critical points extracted from the finite-
size scaling analysis are not as accurate as the ones ex-
tracted from the incommensurate wave vector vanishing
in the PT transition.

IV. QUANTUM MACHINE LEARNING
ANALYSIS

A. States preparation

Both QML architectures aforementioned use the
ground states of the Hamiltonian of the ANNNI model
(Eq. 1) at different values of κ and h as inputs. A
standard approach to access and load the states into the
quantum circuits is to use the technique called Varia-
tional Quantum Eigensolver (VQE). Through VQE, it is

possible to find a set of parameters θ⃗∗ for a given Ansatz

U such that the output state of the circuit U(θ⃗∗)|0⟩⊗N

is close to the sought ground-state wavefunction [114].
This is accomplished by using the Rayleigh-Ritz varia-
tional principle, by minimizing the energy expectation
value of the parametrized output wavefunction:

argmin
θ⃗

⟨ψ(θ⃗)|H|ψ(θ⃗)⟩
⟨ψ(θ⃗)|ψ(θ⃗)⟩

(13)

where
|ψ(θ⃗)⟩ := U(θ⃗)|0⟩⊗N

During training, the output of the circuit is expected
to converge toward the state with the lowest achievable
energy, thus the ground state.
However, for this analysis, it has been considered more

convenient to avoid using the VQE technique altogether
due to the need for training for each combination of κ and
h at each studied system size. Moreover, training VQE
on a simulator becomes inefficient as both simulation
times and the number of shots required exponentially in-
crease with a high number N of qubits. The decision in-
stead has been made to employ the MPS states acquired
from the DMRG analysis as inputs. These states are
integrated into the circuit through the Pennylane func-
tion qml.QubitStateVector, allowing the overwrite of
the initial state (|0⟩⊗N ) with any desired state.
This approach, however, is possible only in simulator-

based analyses, where full access to wavefunctions is
available. On real hardware, such an operation is un-
feasible. Moreover, this approach is limited by the com-
putation of the full state vector. An alternative approach
would require transposing the MPS directly into a PQC
[115], which might eventually facilitate the implementa-
tion of this analysis on real quantum hardware.
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B. QCNN

QCNNs offer a supervised approach for detecting the
phase transitions of the ANNNI model. Like any super-
vised approach, the core objective is to build a model
where the predictions closely match their corresponding
labels.

In this scenario, the labels are encoded in a 2-qubit
quantum state:

• Ferromagnetic : |00⟩
• Paramagnetic : |01⟩
• Antiphase : |10⟩
• Floating phase : |11⟩

The training procedure consists of the minimization of
the following cross-entropy loss function:

L = − 1

|M|
∑

(κ,h)∈M

K∑
j=1

yj(κ, h) log (pj(κ, h)), (14)

where M is the set of parameters of the training set,
yi(κ, h) is the probability vector of the label of the cor-
responding ground state of H(κ, h), and pi(κ, h) is the
probability vector of the output state of the QCNN.

Two distinct analyses were conducted, each employing
different regions in the phase diagram as the training set.
The first analysis mirrors the approach outlined in [34],
utilizing exclusively the points within the integrable part
of the phase diagram {(κ, h) ∈ {0} × [0, 2]} ∪ {(κ, h) ∈
[0, 1] × {0}}, specifically, the points lying on the two
axes, κ = 0 (representing the simple transverse field
case) and h = 0 (representing the quasi-classical model).
This choice allows for the analytical derivation of labels,
however, it omits any points associated with the float-
ing phase case, as none are present on the two axes,
thus making the classifier entirely agnostic regarding the
fourth phase.

For the second analysis, the training set includes the
entire phase diagram within the ranges of h and κ, and
the labels are derived from the DMRG analysis. This
second analysis is not made to showcase the proficiency
of the QCNN in a conventional setting. The main goal is
to evaluate how the finite system size considered affects
the indistinguishability of the points of this particular
phase.

Both analyses were carried out using different values
for the number of spins N specifically, 12, 16, and 20.
Given the considerable size of the circuits simulated, the
training was structured with the primary goal of loading
the minimal amount of state vectors into memory simul-
taneously.

At the start of training, a limited number s of input
state vectors are drawn randomly from each class. After
each set number of epochs e, new input vectors are ran-
domly drawn, and the training process continues. In this
setup, the total number of input state vectors loaded at

any given time is given by s×K where s is significantly
smaller than the total number of training inputs, and K
represents the number of classes present in the training
set. The selection of s was determined based on the size
of each state vector, as defined by N , ensuring that the
highest number of inputs could be processed without ex-
ceeding memory constraints.

1. Analytical points only

In the first analysis, the training set comprises solely
the analytical points located on the axes. Following the
training process, the model is subsequently employed
across the entire phase diagram to predict the phase at
each combination of κ and h, leveraging the high general-
ization capabilities highlighted in [35] for quantum mod-
els. Given the absence of floating phase points within
the training set, the model tends to avoid predicting any
points belonging to that particular class.

Figure 11 displays the QCNN predictions at N being
12 (left), 16 (middle), and 20 (right).

The comparison of the three images reveals two dis-
tinct patterns. Firstly, the accuracy of the transition be-
tween ferromagnetic and paramagnetic phases improves
with an increase in the number of spins in the system. In-
stead, the predicted transition between the antiphase and
paramagnetic phases shifts as the number of spins rises
from the Kosterlitz-Thouless transition line to possibly
plateauing on the Pokrovsky-Talapov line. The presence
of the floating phase becomes increasingly evident with
a higher number of spins, and this is speculated to be
the main reason why the predicted transition line shifts
as the system size increases with larger models tending
to classify floating phase points as paramagnetic rather
than anti-phase.

2. All classes

In the second analysis, every point, including those be-
longing to the floating phase, is integrated into the pool
of training points randomly drawn. Figure 12 showcases
the prediction outcomes of the QCNN for N being of 12,
16, and 20. As in the previous analysis, the accuracy of
the transition line between ferromagnetic and paramag-
netic phases increases with the system’s size. However,
at every system size, all models faced difficulties in pre-
cisely defining the region of the floating phase. This sug-
gests that a system with only 20 spins still experiences
significant limitations due to its constrained size. It is
reasonable to assume that this analysis would improve in
accuracy with a higher number of spins.
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FIG. 11: Predictions of the QCNNs trained on the analytical points of the ANNNI Spin Model at different system sizes:
N = 12 (left), N = 16 (middle), and N = 20 (right). Colors represent Ferromagnetic (light green), Paramagnetic
(dark green), Antiphase (dark blue), and Floating Phase (light blue) as a function of the external magnetic field
(h = B/J1) and interaction strength ratio (κ = −J2/J1) (refer to eq. 1).

FIG. 12: Predictions of the QCNNs, trained on a subset of points from each phase of the ANNNI model at various
system sizes: N = 12 (left), N = 16 (middle), and N = 20 (right). The color scheme indicates Ferromagnetic
(light green), Paramagnetic (dark green), Antiphase (dark blue), and Floating Phase (light blue), as a function of the
external magnetic field (h = B/J1) and interaction strength ratio (κ = −J2/J1) (refer to eq. 1).

C. Anomaly Detection

An alternative approach to discovering the phase land-
scape of a spin system consists of employing the AD ar-
chitecture. By operating in an unsupervised manner, it
effectively bypasses the bottleneck of acquiring training
labels inherent in such a model. For this main reason,
the AD architecture stands as a suitable choice for iden-
tifying phases beyond the analytical ranges, such as the
Floating phase.

The training process for this architecture is as follows:
a single state is selected as the training event, and the
training is carried out to achieve the compression out-
lined in equation 2. This involves the minimization of
the following loss function:

C = 1

2

∑
j∈qT

(1−
〈
σz
j

〉
), (15)

where qT refers to the selected trash qubits, constituting

N/2 out of the total N .
After training, each other state of the phase diagram

is compressed through anomaly detection, and the corre-
sponding cost value is assigned.
Typically, states belonging to the same phase as the

training event undergo optimal compression, given their
inherent similarity. Conversely, states from other phases
tend to exhibit higher values in the cost function. No-
tably, the compression shares values consistently across
different phases, allowing for the outline of all existing
phases in the spin model.
Contrary to the previous analysis [34], the anomaly de-

tection has been applied to even larger spin models. The
aim is to identify the floating phase in the phase diagram
through this model, which may have been previously ob-
scured by the constraints of the smaller system size.
Figure 13 depicts the compression scores generated by

the anomaly detection for N equals 6, 12, and 18.
All anomaly detection models were trained to compress

the point (κ, h) = (0, 0) of the Hamiltonian, represent-
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ing the case with no magnetic field and no next-nearest
neighbor interaction between spins.

Two main observations can be drawn from the figure.
Firstly the boundaries between different phases become
increasingly sharp with larger system sizes. Secondly,
up to 12 qubits (the maximum limit from the previous
analysis), no floating phase can be discerned from the
compression score. However, at N = 18, the presence of
a fourth phase becomes evident, indicated by a dark blue
shade in the area associated with the floating phase.

When N = 18, the system size is sufficiently large to
identify the presence of the Floating Phase. However, it
seems that the size is still limited for the detection of this
phase, as the boundaries of the dark green shade appear
imprecise and fuzzy.

V. SUMMARY AND DISCUSSION

In this work, we defined a QML pipeline, made by
TN and QCNN to perform the classification of differ-
ent phases of the ANNNI model. Starting from training
data obtained with DMRG we input those wavefunctions
in the QCNN. In this configuration, we benefit from the
flexibility and scalability of TN together with the train-
ability guarantee and performance of QCNN.

The TN analysis provides us with numerical pieces
of evidence of changes in the properties of the ground
state, leading to the understanding of the phase dia-
gram. By using the most recent techniques proposed in
[98, 109, 113], we have identified the phase transitions
appearing in the model by fixing the value of the trans-
verse magnetic field. We have found agreement with
previous DMRG results [26] and perturbative analysis
[102]. Moreover, our results also coincide with those
extracted from the model resulting from the Kramers-
Wannier transformation of the ANNNI model, given by
analyses with both finite [98] and infinite systems [97].

On theQCNN side, we confirmed the validity of the
architecture in identifying the phase transitions of the
ANNNI model, as previously demonstrated in [34]. Ad-
ditionally, by increasing significantly the system size of
the model from 12 to a maximum of 20 sites, we have
been able to track the behavior of the classifier as the
number of qubits N increases. As a supervised learn-
ing model, the QCNN lacks an out-of-the-box mecha-
nism for training to recognize the floating phase, as no
points within that phase belong to the analytical sub-
space of the phase diagram. A related study [29] suc-
cessfully identified the Antiphase - Paramagnetic phase
transition through a similar generalization approach em-
ployed in this analysis. This suggests that a comparable
approach could be eventually implemented to the QCNN
to detect the floating phase region by plain generaliza-
tion.

An alternative approach, that has shown promising re-
sults, is the AD architecture first introduced in [116]. By
employing the architecture on the ANNNI model at a

higher system size than ever before, here, it has been
demonstrated that the AD can detect the floating phase
in a fully unsupervised manner, furthermore, the scaling
analysis presented suggest that by increasing even more
the system size, the model will be able to accurately trace
the floating phase.
One of the main features shared by both architec-

tures is the use of the ground-state wavefunctions of
the ANNNI model as inputs. This can be achieved
by employing the VQE, as demonstrated previously
in [34]. Alternatively, the ground-state wavefunctions
can be obtained classically through the DMRG and
then transposed into PQCs using techniques outlined in
[115, 117]. These methods create a bridge between TNs
and QML, enabling faster state preparation with greater
accuracy[117]. In this work, we followed the latter ap-
proach, implementing the MPS wavefunctions as input
obtained through DMRG in the TN analysis.
In summary, although TN analysis provides more ac-

curate results as larger system sizes can be achieved,
the amount of entanglement in the system could limit
the study of more complex models. On the other hand,
quantum computers promise to simulate states of high
entanglement more effectively than classical ones. There-
fore, despite not being at this point right now, classifying
phase diagrams through QML techniques seems to be a
promising avenue.
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FIG. 13: Compression Scores C of the AD circuits trained on the (κ, h) = (0, 0) point of the ANNNI model phase
diagram at different system sizes N : 6 (left), 12 (middle), and 18 (right). The scores are showcased as a function of
the interaction strength ratio (κ = −J2/J1) and the external magnetic field (h = B/J1). Lower compression scores
indicate better disentanglement of trash qubits from others, as defined by eq. 2.
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Appendix A: Extraction of the Correlation Length

Despite the different behavior of the correlation length
in gapped and gapless phases, since we work with finite
systems (i.e., with finite bond dimensions), we do not
expect its divergence at criticality. Therefore, we can
extract the value of the correlation length, as proposed
in [98, 109, 113], by considering the correlation function

Czz
i,j = ⟨σz

i σ
z
j ⟩ − ⟨σz

i ⟩⟨σz
j ⟩, (A1)

where i, j denote different sites. This function is related
to the Ornstein-Zenicke form [118]:

Czz
i,j ∝

e−|i−j|/ξ√
|i− j|

cos(q|i− j|+ ϕ0), (A2)

where the correlation length ξ, the wave-vector q and the
initial phase ϕ0 are fitting parameters. One example of
such fits is shown in Fig. 14. We discard the oscillations
and fit the main slope of the decay as shown for high
precision in the value obtained for ξ. Note that the fit
is performed in a semi-log scale lnCzz(x = |i − j|) ≈
cte− x/ξ − ln(x)/2.

FIG. 14: Extraction of the correlation length ξ from cor-
relations in the z direction. These transverse correlations
are obtained for h = 0.5 inside the floating phase on a
finite-size system with N = 240 and open boundary con-
ditions. The green points are DMRG data and the blue
line is the result of the fit with Eq. A2. Oscillations have
been removed to fit the main slope of the decay. Note
the semi-log scale.

Appendix B: Extraction of the Luttinger Liquid
Parameters

To extract the Luttinger liquid exponent inside the
floating phase, we have fitted the Friedel oscillations of
the spin-density profile induced by the open boundary
conditions with Eq. 8. Open ends in the chain break
translational invariance and there is a slowly decaying
alternating term in the spin-density

⟨σz
j ⟩ = ⟨σz

j ⟩+ (−1)j ⟨̃σz
j ⟩, (B1)

where ⟨̃σz
j ⟩ becomes non-zero near the boundary and de-

cays slowly away from it [119]. In order to obtain both
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⟨σz
j ⟩ and ⟨̃σz

j ⟩, we follow the 7-point formulas derived in

[119]:

⟨σz
j ⟩ = − 15

496
f(j − 3)− 1

248
f(j − 2) +

71

248
f(j − 1)

+
1

2
f(j) +

137

496
f(j + 1) +

1

248
f(j + 2)− 1

31
f(j + 3),

⟨̃σz
j ⟩ =

15

496
f(j − 3) +

1

248
f(j − 2)− 71

248
f(j − 1)

+
1

2
f(j)− 137

496
f(j + 1)− 1

248
f(j + 2) +

1

31
f(j + 3).

(B2)

An example of a typical fit is provided in Fig. 15. As
we see, 20% of sites close to each end of the chain are
discarded and we only fit the middle part to reduce edge
effects. The root mean squared error (‘RMSE’) obtained
is ≈ 10−5.

FIG. 15: Extraction of Luttinger liquid parameters from
Friedel oscillations profile. This is the Friedel oscillation
pattern for h = 0.5 inside the floating phase obtained
on a finite-size system with N = 240 and open boundary
conditions. Green points are DMRG data and blue circles
are the result of the fit with Eq. 8 (all green points are in-
side blue circles). Note that the uniform part of the spin

density ⟨σz
j ⟩ has been subtracted, and the fitting window

is restricted to the range j ∈ [48, 191] to avoid edge ef-
fects. The root mean squared error (‘RMSE’) obtained
is ≈ 10−5.
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